Van Treuren, W. & Dodd, D. Microbial contribution to the human metabolome: implications for health and disease. Ann. Rev. Pathol. 15345–369 (2020).
Russell, WR et al. The major phenylpropanoid-derived metabolites in the human gut may arise from microbial fermentation of proteins. Mol. Nutr. Food res. 57523–535 (2013).
Smith, EA & Macfarlane, GT Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 3327–337 (1997).
Liu, Y., Hou, Y., Wang, G., Zheng, X. & Hao, H. Gut microbial metabolites of aromatic amino acids as signals in host-microbe interaction. Endocrinol Trends. Metab. 31818–834 (2020).
Allison, MJ, Bryant, MP & Doetsch, RN Volatile fatty acid growth factor for bovine rumen cellulolytic cocci. Science 128474–475 (1958).
Stack, RJ, Hungate, RE & Opsahl, WP Phenylacetic acid stimulation of cellulose digestion by Ruminococcus albus 8. Appl. Approximately. Microbiol. 46539-544 (1983).
Hungate, RE & Stack, RJ Phenylpropanoic acid: growth factor for Ruminococcus albus. Appl. Approximately. Microbiol. 4479–83 (1982).
Stickland, LH Metabolism studies of strict anaerobes (genus Clostridium): the chemical reactions by which Cl. sporogenes gets its energy. Biochemistry. J 281746–1759 (1934).
Nisman, B. The Stickland Reaction. Bacteriol. Round. 1816–42 (1954).
Lovitt, RW, Kell, DB & Morris, JG Proline reduction of Clostridium sporogens is coupled to proton vector ejection. Microbiol FEMS. Lett. 36269-273 (1986).
Bader, J. & Simon, H. ATP formation is coupled to hydrogenation of 2-enoates in Clostridium sporogens. Microbiol FEMS. Lett. 20171–175 (1983).
Dickert, S., Pierik, AJ & Buckel, W. Molecular characterization of phenyllactate dehydratase and its initiator of Clostridium sporogens. Mol. Microbiol. 4449–60 (2002).
Buckel, W. & Thauer, RK Flavin-based electron bifurcation, a novel biological energy coupling mechanism. Chem. Round. 1183862–3886 (2018).
Kimura, R. & Liao, TH A new anaerobic bacterium decomposing thiamine, Clostridium thiaminolyticum Kimura and Liao. proc. Jpn Acad. 29132–133 (1953).
Karu, N. et al. A review of human fecal metabolomics: methods, applications, and human fecal metabolome database. Anal. Chem. Deed 10301–24 (2018).
Wildenauer, FX & Winter, J. Isoleucine and arginine fermentation by pure and syntrophic cultures of Clostridium sporogens. Microbiol FEMS. Lett. 38373–379 (1986).
Lovitt, RW, Morris, JG & Kell, DB The growth and nutrition of Clostridium sporogens NCIB 8053 in defined media. J.Appl. Bacteriol. 6271–80 (1987).
Levin, BJ et al. A glycyl radical enzyme important in human gut microbiomes metabolizes trans-4-hydroxy-I-proline. Science https://doi.org/10.1126/science.aai8386 (2017).
Lovitt, RW, Kell, DB, and Morris, JG The physiology of Clostridium sporogens NCIB 8053 growing in defined media. J.Appl. Bacteriol. 6281–92 (1987).
Neumann-Schaal, M., Hofmann, JD, Will, SE, and Schomburg, D. Time-resolved amino acid uptake of Clostridium difficile 630(delta)erm and concomitant formation of fermentation products and toxins. BMC Microbiol. 15281 (2015).
Bouillaut, L., Self, WT & Sonenshein, AL Proline-dependent regulation of Clostridium difficile Metabolism of sticky earths. J. Bacteriol. 195844–854 (2013).
Jackson, S., Calos, M., Myers, A. & Self, WT Analysis of proline reduction in nosocomial pathogen Clostridium difficile. J. Bacteriol. 1888487–8895 (2006).
Ragsdale, SW Pyruvate ferredoxin oxidoreductase and its radical intermediate. Chem. Round. 1032333–2346 (2003).
Xu, XL & Grant, GA Identification and characterization of two new types of bacteria I-serine dehydratases and evaluation of ACT domain function. Camber. Biochemistry. Biophys. 54062–69 (2013).
Leach, S., Harvey, P. & Wali, R. Changes with growth rate in membrane lipid composition and amino acid utilization by continuous cultures of Campylobacter jejuni. J.Appl. Microbiol. 82631–640 (1997).
Velayudhan, J., Jones, MA, Barrow, PA, and Kelly, DJ I-Serine catabolism via oxygen-labile I-serine dehydratase is essential for the colonization of the avian intestine by Campylobacter jejuni. Infect. Immun. 72260-268 (2004).
Claus, SP et al. Multicompartmental systemic effects of the gut microbiome on mouse metabolic phenotypes. Mol. System Biol. 4219 (2008).
Dodd, D. et al. An intestinal bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551648–652 (2017).
Guo, CJ et al. Depletion of microbiome-derived molecules in the host using Clostridium genetic. Science https://doi.org/10.1126/science.aav1282 (2019).
Sharon, G et al. Human Autism Spectrum Disorder Gut Microbiota Promotes Behavioral Symptoms in Mice. Cell 1771600–1618.e1617 (2019).
Aronov, PA et al. Colonic contribution to uremic solutes. Jam. Soc. Nephrol. 221769-1776 (2011).
Fonknechten, N. et al. Clostridium sticklandiispecialist in amino acid degradation: revisiting its metabolism through the sequence of its genome. BMC Genom. 11555 (2010).
Stadtman, TC & Elliott, P. Studies on the enzymatic reduction of amino acids. II. Purification and properties of D-proline reductase and a proline racemase of Clostridium sticklandii. J. Biol. Chem. 228983–997 (1957).
Barker, HA Degradation of amino acids by anaerobic bacteria. Ann. Rev. Biochem. 5023–40 (1981).
Nemet, I. et al. An intestinal microbial metabolite linked to cardiovascular disease acts via adrenergic receptors. Cell 180862–877.e822 (2020).
Seedorf, H. et al. The genome of Clostridium kluyveria strict anaerobe with unique metabolic characteristics. proc. Natl Acad.Sci. UNITED STATES 1052128-2133 (2008).
Li, F et al. Coupled reduction of ferredoxin and crotonyl coenzyme A (CoA) with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex of Clostridium kluyveri. J. Bacteriol. 190843–850 (2008).
Herrmann, G., Jayamani, E., Mai, G. & Buckel, W. Energy conservation via electron transfer flavoprotein in anaerobic bacteria. J. Bacteriol. 190784–791 (2008).
Kuhns, M. et al. The Rnf complex of the acetogenic bacterium Acetobacterium woodii: purification and characterization of RnfC and RnfB. Biochem. Biophys. Acta Bioenerg. 1861148263 (2020).
Hreha, TN et al. Complete topology of the RNF complex of Vibrio cholerae. Biochemistry 542443–2455 (2015).
Nayfach, S., Fischbach, MA & Pollard, KS MetaQuery: A web server for rapid annotation and quantitative analysis of specific genes in the human gut microbiome. Bioinformatics 313368–3370 (2015).
Steed, AL et al. The microbial metabolite desaminotyrosine protects against influenza through type I interferon. Science 357498–502 (2017).
Venkatesh, M. et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and the Toll-like receptor 4. Immunity 41296-310 (2014).
Medema, MH, Takano, E. & Breitling, R. Detecting sequence homology at the gene cluster level with MultiGeneBlast. Mol. Biol. Evol. 301218-1223 (2013).